Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.928
Filtrar
1.
Curr Protoc ; 4(4): e1009, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572677

RESUMEN

Expanding the genetic alphabet enhances DNA recombinant technologies by introducing unnatural base pairs (UBPs) beyond the standard A-T and G-C pairs, leading to biomaterials with novel and increased functionalities. Recent developments include UBPs that effectively function as a third base pair in replication, transcription, and/or translation processes. One such UBP, Ds-Px, demonstrates extremely high specificity in replication. Chemically synthesized DNA fragments containing Ds bases are amplified by PCR with the 5'-triphosphates of Ds and Px deoxyribonucleosides (dDsTP and dPxTP). The Ds-Px pair system has applications in enhanced DNA data storage, generation of high-affinity DNA aptamers, and incorporation of functional elements into RNA through transcription. This protocol describes the synthesis of the amidite derivative of Ds (dDs amidite), the triphosphate dDsTP, and the diol-modified dPxTP (Diol-dPxTP) for PCR amplifications involving the Ds-Px pair. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of Ds deoxyribonucleoside (dDs) Basic Protocol 2: Synthesis of dDs amidite Basic Protocol 3: Synthesis of dDs triphosphate (dDsTP) Basic Protocol 4: Synthesis of Pn deoxyribonucleoside (4-iodo-dPn) Basic Protocol 5: Synthesis of acetyl-protected diol-modified Px deoxyribonucleoside (Diol-dPx) Basic Protocol 6: Synthesis of Diol-dPx triphosphate (Diol-dPxTP) Basic Protocol 7: Purification of triphosphates Support Protocol 1: Synthesis of Hoffer's chlorosugar Support Protocol 2: Preparation of 0.5 M pyrophosphate in DMF Support Protocol 3: Preparation of 2 M TEAB buffer.


Asunto(s)
Aptámeros de Nucleótidos , ADN , Polifosfatos , Pirroles , Reacción en Cadena de la Polimerasa/métodos , Emparejamiento Base , ADN/genética , ADN/análisis , Piridinas , Aptámeros de Nucleótidos/genética
2.
Indian J Tuberc ; 71(2): 117-122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589114

RESUMEN

Tuberculosis (TB) is one of the contagious diseases caused by M. tuberculosis (MTB) bacteria. Prompt diagnosis is one of the active solutions to control the spread of this infection. Besides, a targeted, specific and non-complex diagnosis can prove promising in this type of epidemic. This study was designed to compare the efficiencies of a diagnosis by Ziehl-Neelsen staining (ZN) and by the polymerase chain reaction (PCR) technique. Samples presented smear-positive pulmonary TB were subjected to Chromosomal restriction fragment length polymorphism of IS6110 (IS6110-RFLP) for fingerprinting profile determination. The results showed that out of 100 sputum samples of suspected case, 53 were positive. Numbers of positive individuals for tuberculosis obtained by the different diagnostic techniques, to know, (ZN staining; culture and PCR) were respectively: 6, 25 and 22. Chromosomal RFLP fingerprinting profile revealed the presence of five different genotypes obtained from seven tested isolates. These results suggest that molecular techniques are alternative tool for fast and specific diagnosis of pulmonary MTB from sputum.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Elementos Transponibles de ADN , Polimorfismo de Longitud del Fragmento de Restricción , Marruecos , Tuberculosis Pulmonar/epidemiología , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa/métodos
3.
Digit J Ophthalmol ; 30(1): 1-4, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601900

RESUMEN

Background: Laboratory confirmation is crucial for diagnosis and management of herpes simplex virus (HSV) keratitis. However, the sensitivity of polymerase chain reaction (PCR) in keratitis is low (25%) compared with that of mucocutaneous disease (75%). We developed an educational intervention aimed at improving the diagnostic yield of PCR. Methods: The medical records of keratitis cases seen at the emergency department of a London tertiary ophthalmic referral hospital over two distinct periods, before and after an educational program on swab technique, were reviewed retrospectively. Results: A total of 252 HSV cases were included. Increases in the laboratory-confirmed diagnosis of HSV-1 were observed, in both first presentations (11.1%-57.7%) and recurrent cases (20%-57.6%). The rate of positive HSV-1 PCR in eyes with an epithelial defect increased from 19% pre-intervention to 62% post intervention. Notably, 3% were positive for varicella zoster virus DNA, and there was a single case of Acanthamoeba keratitis. Conclusion: Our results suggest that, with proper swabbing technique, PCR may be more sensitive than previously reported.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , Humanos , Proyectos Piloto , Estudios Retrospectivos , ADN Viral/análisis , Queratitis Herpética/diagnóstico , Herpesvirus Humano 1/genética , Reacción en Cadena de la Polimerasa/métodos , Herpes Simple/diagnóstico
4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 942-950, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621901

RESUMEN

Scorpio, a commonly used animal medicine in China, is derived from Buthus martensii as recorded in the Chinese Pharmacopoeia. China harbors rich species of Scorpionida and adulterants exist in the raw medicinal material and deep-processed products of Scorpio. The microscopic characteristics of the deep-processed products may be incomplete or lost during processing, which makes the identification difficult. In this study, the maximum likelihood(ML) tree was constructed based on the morphology and cytochrome C oxidase subunit I(COⅠ) to identify the species of Scorpio products. The results showed that the main adulterant of Scorpio was Lychas mucronatus. According to the specific SNP sites in the COⅠ sequence of B. martensii, the stable primers were designed for the identification of the medicinal material and formula granules of Scorpio. The polymerase chain reaction(PCR) at the annealing temperature of 61 ℃ and 30 cycles produced bright specific bands at about 150 bp for both B. martensii and its formula particles and no band for adulterants. The adaptability of the method was investigated, which showed that the bands at about 150 bp were produced for Scorpio medicinal material, lyophilized powder, and formula granules, and commercially available formula granules. The results showed that the established method could be used to identify the adulterants of Scorpio and its formula granules, which could help to improve the quality control system and ensure the safe clinical application of Scorpio formula granules.


Asunto(s)
Animales Venenosos , Medicamentos Herbarios Chinos , Escorpiones , Animales , Reacción en Cadena de la Polimerasa/métodos
5.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1517-1525, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621935

RESUMEN

Cervi Cornu is the ossified antler, or the base antler that falls off in the spring of the following year after the pilose antler is sawn off from Cervus elaphus or C. nippon, as a precious traditional Chinese medicine, has been recognized for its medicinal value and widely used in clinical practice. However, the origins of Cervi Cornu are miscellaneous, and Cervi Cornu is even mixed with adulterants in the market. Currently, there is a shortage of ways to identify Cervi Cornu and no standard to control the quality of Cervi Cornu. So it is valuable to develop a way to effectively identify Cervi Cornu from the adulterants. In this study, the differences in the mitochondrial barcode cytochrome b(Cytb) gene sequences of C. elaphus, C. nippon and their related species were compared and the specific single nucleotide polymorphism(SNP) sites on the Cytb sequences of Cervi Cornu were screened out. According to the screened SNPs, Cervi Cornu-specific primers dishmy-F and dishmy-R were designed. The PCR system was established and optimized, and the tolerance and feasibility of Taq polymerases and PCR systems affecting the repeatability of the PCR method were investigated. The amplification products of C. elaphus and C. nippon were digested using the restriction enzyme MseⅠ. The results showed that after electrophoresis of the product from PCR with the annealing temperature of 56 ℃ and 35 cycles, a single specific band at about 100 bp was observed for C. elaphus samples, and the product of C. elaphus samples was 60 bp shorter than that of C. nippon samples. There was no band for adulterants from other similar species such as Alces alces, Rangifer tarandus, Odocoileus virginianus, O. hemionus, Cap-reolus pygargus, Przewalskium albirostis and negative controls. The polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) method established in this study can quickly and accurately identify Cervi Cornu originated from C. elaphus in crude drugs, standard decoctions, and formula granules, and distinguish the origins of Cervi Cornu products, i.e., C. nippon and similar species. This study can be a reference for other studies on the quality standard of other formula granules of traditional Chinese medicines.


Asunto(s)
Cornus , Ciervos , Animales , Polimorfismo de Longitud del Fragmento de Restricción , Cornus/genética , Reacción en Cadena de la Polimerasa/métodos , Ciervos/genética , Cartilla de ADN
6.
Biotechnol J ; 19(4): e2400026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622795

RESUMEN

Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.


Asunto(s)
ADN de Cadena Simple , ADN , ADN de Cadena Simple/genética , Reacción en Cadena de la Polimerasa/métodos , ADN Polimerasa Dirigida por ADN , Oligonucleótidos , Técnicas de Amplificación de Ácido Nucleico/métodos
7.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578268

RESUMEN

Background. PCR amplification is a necessary step in many next-generation sequencing (NGS) library preparation methods [1, 2]. Whilst many PCR enzymes are developed to amplify single targets efficiently, accurately and with specificity, few are developed to meet the challenges imposed by NGS PCR, namely unbiased amplification of a wide range of different sizes and GC content. As a result PCR amplification during NGS library prep often results in bias toward GC neutral and smaller fragments. As NGS has matured, optimized NGS library prep kits and polymerase formulations have emerged and in this study we have tested a wide selection of available enzymes for both short-read Illumina library preparation and long fragment amplification ahead of long-read sequencing.We tested over 20 different hi-fidelity PCR enzymes/NGS amplification mixes on a range of Illumina library templates of varying GC content and composition, and find that both yield and genome coverage uniformity characteristics of the commercially available enzymes varied dramatically. Three enzymes Quantabio RepliQa Hifi Toughmix, Watchmaker Library Amplification Hot Start Master Mix (2X) 'Equinox' and Takara Ex Premier were found to give a consistent performance, over all genomes, that mirrored closely that observed for PCR-free datasets. We also test a range of enzymes for long-read sequencing by amplifying size fractionated S. cerevisiae DNA of average size 21.6 and 13.4 kb, respectively.The enzymes of choice for short-read (Illumina) library fragment amplification are Quantabio RepliQa Hifi Toughmix, Watchmaker Library Amplification Hot Start Master Mix (2X) 'Equinox' and Takara Ex Premier, with RepliQa also being the best performing enzyme from the enzymes tested for long fragment amplification prior to long-read sequencing.


Asunto(s)
ADN , Saccharomyces cerevisiae , Reacción en Cadena de la Polimerasa/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
PLoS One ; 19(4): e0302256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626135

RESUMEN

Fusarium wilt, caused by the fungus Fusarium buharicum, is an emerging disease of okra in Japan. The disease was first reported in Japan in 2015, causing significant damage to okra seedlings. Due to the potential threat in okra cultivation, the development of an accurate detection method for F. buharicum is needed for the surveillance and management of the disease. In this study, we designed a primer set and developed conventional and nested PCR assays for the specific detection of F. buharicum in infected okra plants and contaminated soil, respectively. We compared the diversity of the translation elongation factor 1 alpha (EF-1α) gene of F. buharicum with 103 other fungal species/isolates to design a species-specific primer. This primer pair successfully amplified approximately 400 bp of PCR product that was only detected in the F. buharicum isolate, not in the other fungal isolates. The developed nested PCR method was highly sensitive and could detect the fungus from a 0.01 fg DNA sample. The primer successfully detected the pathogen in artificially infected plants and soil by conventional and nested PCR, respectively. This is the first report of the development of the F. buharicum-specific primer set and detection assays, which can be used for the specific and sensitive detection of F. buharicum in field samples and for taking early control measures.


Asunto(s)
Abelmoschus , Fusarium , Fusarium/genética , Abelmoschus/genética , Cartilla de ADN/genética , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Suelo
9.
Birth Defects Res ; 116(4): e2342, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38632851

RESUMEN

BACKGROUND: Abortion and fetal death are common in fetuses with holoprosencephaly, so genetic examinations often have to be made in a post-mortem setting. The efficiency of the conventional karyotyping using cultured fibroblasts in these situations is limited due to frequent culture failure. In the current study, archived cases of holoprosencephaly, where post-mortem genetic evaluation was requested and sufficient frozen material was available, were reevaluated using the quantitative fluorescence polymerase chain reaction (QF-PCR) technique. METHODS: Testing for aneuploidies of chromosomes 13, 15, 16, 18, 21, 22, X, and Y with the QF-PCR technique was carried out on DNA isolated from archived frozen chorionic villi in seven cases of holoprosencephaly. RESULTS: QF-PCR was successful in all seven cases. Two cases of trisomy 13, two cases of triploidy, and one case of trisomy 18 was found meaning a 71% diagnostic yield. The success rate of QF-PCR (100%, 7/7) was superior compared to conventional karyotyping (43%, 3/7). CONCLUSIONS: Rapid aneuploidy testing using the QF-PCR technique is a simple, reliable, time- and cost-effective method sufficient to conclude the etiologic investigation in the majority of holoprosencephaly cases post-mortem.


Asunto(s)
Holoprosencefalia , Embarazo , Femenino , Humanos , Diagnóstico Prenatal/métodos , Aneuploidia , Reacción en Cadena de la Polimerasa/métodos , Cariotipificación
10.
Methods Mol Biol ; 2788: 397-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656527

RESUMEN

Early monitoring of Microcystis, a cyanobacterium that produces microcystin, is paramount in order to confirm the presence of Microcystis spp. Both phenotypic and genotypic methods have been used. The phenotypic methods provide the presence of the microcystis but do not confirm its species type and toxin produced. Additionally, phenotypic methods cannot differentiate toxigenic from non-toxigenic Microcystis. Therefore, the current protocol also describes genetic methods based on PCR to detect toxigenic Microcystis spp. based on microcystin synthetase E (mcy E) gene and 16-23S RNA genes for species-specific identification, which can effectively comprehend distinct lineages and discrimination of potential complexity of microcystin populations. The presence of these microcystin toxins in blood, in most cases, indicates contamination of drinking water by cyanobacteria. The methods presented herein are used to identify microcystin toxins in drinking water and blood.


Asunto(s)
Cianobacterias , Lagos , Microcistinas , Lagos/microbiología , Microcistinas/genética , Microcistinas/análisis , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Fenotipo , Genotipo , Reacción en Cadena de la Polimerasa/métodos , Microbiología del Agua , Microcystis/genética , Microcystis/aislamiento & purificación , Microcystis/clasificación , Técnicas de Genotipaje/métodos
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 344-353, 2024 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-38501420

RESUMEN

OBJECTIVE: To propose a method for mitigate the impact of anomaly points (such as dust, bubbles, scratches on the chip surface, and minor indentations) in images on the results of digital droplet PCR (ddPCR) detection to achieve high-throughput, stable, and accurate detection. METHODS: We propose a Filter Faster R-CNN ddPCR detection model, which employs Faster R-CNN to generate droplet prediction boxes followed by removing the anomalies within the positive droplet prediction boxes using an outlier filtering module (Filter). Using a plasmid carrying a norovirus fragment as the template, we established a ddPCR dataset for model training (2462 instances, 78.56%) and testing (672 instances, 21.44%). Ablation experiments were performed to test the effectiveness of 3 filtering branches of the Filter for anomaly removal on the validation dataset. Comparative experiments with other ddPCR droplet detection models and absolute quantification experiments of ddPCR were conducted to assess the performance of the Filter Faster R-CNN model. RESULTS: In low-dust and dusty environments, the Filter Faster R-CNN model achieved detection accuracies of 98.23% and 88.35% for positive droplets, respectively, with composite F1 scores reaching 99.15% and 99.14%, obviously superior to the other models. The introduction of the filtering module significantly enhanced the positive accuracy of the model in dusty environments. In the absolute quantification experiments, a regression line was plotted using the results from commercial flow cytometry equipment as the standard concentration. The results show a regression line slope of 1.0005, an intercept of -0.025, and a determination coefficient of 0.9997, indicating high consistency between the two results. CONCLUSION: The ddPCR detection technique using the Filter Faster R-CNN model provides a robust detection method for ddPCR under various environmental conditions.


Asunto(s)
Polvo , Reacción en Cadena de la Polimerasa/métodos
12.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542075

RESUMEN

This research investigated the factors associated with the quantitative detection of Paratrichodorus allius in soil using droplet digital PCR (ddPCR). Small-sized nematodes exhibited significantly lower DNA quantities compared to their medium and large counterparts. Soil pre-treatments (room temperature drying and 37 °C oven-drying) demonstrated no substantial impact on ddPCR detection, and soil storage (0-3 months at 4 °C) exhibited negligible alterations in DNA quantities. A commercial DNA purification kit improved the resulting quality of ddPCR, albeit at the cost of a notable reduction in DNA quantity. Upon assessing the impact of inhibitors from soil extracts, a higher inhibitor concentration (5%) influenced ddPCR amplification efficiency. Incorporating bovine serum albumin (BSA) (0.2 µg/µL or 0.4 µg/µL) into the ddPCR setup mitigated the issue. In brief, while ddPCR exhibits minimal sensitivity to soil pre-treatments and storage, higher concentrations of PCR inhibitors and the DNA purification process can influence the results. Despite ddPCR's capability to detect nematodes of all sizes, quantification may not precisely reflect soil population. Incorporating BSA into the ddPCR setup enhances both detection and quantification capacities. This study represents the first comprehensive investigation of its kind for plant-parasitic nematodes, providing crucial insights for application of ddPCR in nematode diagnosis directly from the soil DNA.


Asunto(s)
Nematodos , Suelo , Animales , Reacción en Cadena de la Polimerasa/métodos , Nematodos/genética , ADN/genética
13.
Int J Mol Med ; 53(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38488030

RESUMEN

DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high­throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation­Sensitive Restriction Enzyme­droplet digital PCR (MSRE­ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high­sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE­ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE­ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.


Asunto(s)
Metilación de ADN , Melanoma , Sulfitos , Humanos , Metilación de ADN/genética , Melanoma/diagnóstico , Melanoma/genética , Reacción en Cadena de la Polimerasa/métodos , ADN/genética
14.
Vet Microbiol ; 292: 110058, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537399

RESUMEN

Mycoplasma hyopneumoniae detection in clinical specimens is accomplished by PCR targeting bacterial DNA. However, the high stability of DNA and the lack of relationship between bacterial viability and DNA detection by PCR can lead to diagnostic interpretation issues. Bacterial messenger RNA is rapidly degraded after cell death, and consequently, assays targeting mRNA detection can be used for the exclusive detection of viable bacterial cells. Therefore, this study aimed at developing a PCR-based assay for the detection of M. hyopneumoniae mRNA and at validating its applicability to differentiate viable from inert bacteria. Development of the RNA-based PCR encompassed studies to determine its analytical sensitivity, specificity, and repeatability, as well as its diagnostic accuracy. Comparisons between DNA and mRNA detection for the same target gene were performed to evaluate the ability of the RNA-based PCR to detect exclusively viable M. hyopneumoniae after bacterial inactivation using various methods. The RNA-based PCR was also compared to the DNA-based PCR as a tool to monitor the growth of M. hyopneumoniae in vitro. Under the conditions of this study, the developed RNA-based PCR assay detected only viable or very recently inactivated M. hyopneumoniae, while the DNA-based PCR consistently detected cells irrespective of their viability status. Changes in growth activity over time were only observable via RNA-based PCR. This viability PCR assay could be directly applied to evaluate the clearance of M. hyopneumoniae or to determine the viability of the bacterium at late stages of eradication programs.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos , Animales , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/diagnóstico , Neumonía Porcina por Mycoplasma/microbiología , Sensibilidad y Especificidad , ADN Bacteriano/genética , ADN Bacteriano/análisis , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , ARN , ARN Mensajero , Enfermedades de los Porcinos/microbiología
15.
Vaccine ; 42(11): 2927-2932, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38548526

RESUMEN

BACKGROUND: The introduction of varicella vaccines into routine pediatric immunization programs has led to a considerable reduction in varicella incidence. However, there have been reports of varicella, herpes zoster, and meningitis caused by the vaccine strain of varicella-zoster virus (VZV), raising concerns. Establishing the relationship between the wild-type and vaccine strains in VZV infections among previously vaccinated individuals is crucial. Differences in the single nucleotide polymorphisms (SNPs) among vaccine strains can be utilized to identify the strain. In this study, we employed nanopore sequencing to identify VZV strains and analyzed clinical samples. METHODS: We retrospectively examined vesicle and cerebrospinal fluid samples from patients with VZV infections. One sample each of the wild-type and vaccine strains, previously identified using allelic discrimination real-time PCR and direct sequencing, served as controls. Ten samples with undetermined VZV strains were included. After DNA extraction, a long PCR targeting the VZV ORF62 region was executed. Nanopore sequencing identified SNPs, allowing discrimination between the vaccine and wild-type strains. RESULTS: Nanopore sequencing confirmed SNPs at previously reported sites (105,705, 106,262, 107,136, and 107,252), aiding in distinguishing between wild-type and vaccine strains. Among the ten unknown samples, nine were characterized as wild strains and one as a vaccine strain. Even in samples with low VZV DNA levels, nanopore sequencing was effective in strain identification. CONCLUSION: This study validates that nanopore sequencing is a reliable method for differentiating between the wild-type and vaccine strains of VZV. Its ability to produce long-read sequences is remarkable, allowing simultaneous confirmation of known SNPs and the detection of new mutations. Nanopore sequencing can serve as a valuable tool for the swift and precise identification of wild-type and vaccine strains and has potential applications in future VZV surveillance.


Asunto(s)
Varicela , Herpes Zóster , Secuenciación de Nanoporos , Humanos , Niño , Herpesvirus Humano 3/genética , Estudios Retrospectivos , Polimorfismo de Longitud del Fragmento de Restricción , Reacción en Cadena de la Polimerasa/métodos , Vacuna contra la Varicela/genética , Herpes Zóster/prevención & control , ADN Viral/genética
16.
Clin Epigenetics ; 16(1): 45, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528596

RESUMEN

BACKGROUND & METHODS: In this study, a novel restriction enzyme (RE) digestion-based droplet digital polymerase chain reaction (ddPCR) assay was designed for cg005575921 within the AHRR gene body and compared with matching results obtained by bisulfite conversion (BIS) ddPCR and Illumina DNA methylation array. RESULTS: The RE ddPCR cg05575921 assay appeared concordant with BIS ddPCR (r2 = 0.94, P < 0.0001) and, when compared with the Illumina array, had significantly better smoking status classification performance for current versus never smoked (AUC 0.96 versus 0.93, P < 0.04) and current versus ex-smoker (AUC 0.88 versus 0.83, P < 0.04) comparisons. CONCLUSIONS: The RE ddPCR cg05575921 assay accurately predicts smoking status and could be a useful component of 'precision-medicine' chronic disease risk screening tools.


Asunto(s)
Metilación de ADN , Fumar , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Metilación de ADN/genética , Reacción en Cadena de la Polimerasa/métodos , Proteínas Represoras/genética , Fumar/efectos adversos , Fumar/genética
17.
Forensic Sci Int ; 357: 111971, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447344

RESUMEN

Short tandem repeats (STRs) or microsatellites are short, tandemly repeated DNA sequences that involve a repetitive unit of 1-6 bp. DNA isolation and purification from a large number and often compromised samples gives problems to forensic labs for STR typing. Many of the conventional methods used in the isolation and purification of DNA from forensic samples are time consuming, expensive, hazardous for health and are often associated with greater risks of cross contamination. FTA® technology is a method designed to simplify the collection, shipment, archiving and purification of nucleic acid from a wide variety of biological samples. We report a new method for the direct STR amplification which can amplify STR loci from human foetal tissues spotted on FTA cards, bye-passing the need of DNA purification. The STR loci amplified by this method was compared with conventional method of STR profiling and was found absolutely matching. Therefore, this new method is demonstrated to be very useful for fast, less expensive and non- hazardous forensic DNA analysis.


Asunto(s)
Dermatoglifia del ADN , ADN , Humanos , Reacción en Cadena de la Polimerasa/métodos , Dermatoglifia del ADN/métodos , ADN/análisis , Repeticiones de Microsatélite
19.
Biomed Microdevices ; 26(2): 20, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430318

RESUMEN

Polymerase chain reaction (PCR) has been considered as the gold standard for detecting nucleic acids. The simple PCR system is of great significance for medical applications in remote areas, especially for the developing countries. Herein, we proposed a low-cost self-assembled platform for microchamber PCR. The working principle is rotating the chamber PCR microfluidic chip between two heaters with fixed temperature to solve the problem of low temperature variation rate. The system consists of two temperature controllers, a screw slide rail, a chamber array microfluidic chip and a self-built software. Such a system can be constructed at a cost of about US$60. The micro chamber PCR can be finished by rotating the microfluidic chip between two heaters with fixed temperature. Results demonstrated that the sensitivity of the temperature controller is 0.1℃. The relative error of the duration for the microfluidic chip was 0.02 s. Finally, we successfully finished amplification of the target gene of Porphyromonas gingivalis in the chamber PCR microfluidic chip within 35 min and on-site detection of its PCR products by fluorescence. The chip consisted of 3200 cylindrical chambers. The volume of reagent in each volume is as low as 0.628 nL. This work provides an effective method to reduce the amplification time required for micro chamber PCR.


Asunto(s)
Microfluídica , Microfluídica/métodos , Temperatura , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa/métodos
20.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38555473

RESUMEN

Digital PCR (dPCR) is a highly accurate technique for the quantification of target nucleic acid(s). It has shown great potential in clinical applications, like tumor liquid biopsy and validation of biomarkers. Accurate classification of partitions based on end-point fluorescence intensities is crucial to avoid biased estimators of the concentration of the target molecules. We have evaluated many clustering methods, from general-purpose methods to specific methods for dPCR and flowcytometry, on both simulated and real-life data. Clustering method performance was evaluated by simulating various scenarios. Based on our extensive comparison of clustering methods, we describe the limits of these methods, and formulate guidelines for choosing an appropriate method. In addition, we have developed a novel method for simulating realistic dPCR data. The method is based on a mixture distribution of a Poisson point process and a skew-$t$ distribution, which enables the generation of irregularities of cluster shapes and randomness of partitions between clusters ('rain') as commonly observed in dPCR data. Users can fine-tune the model parameters and generate labeled datasets, using their own data as a template. Besides, the database of experimental dPCR data augmented with the labeled simulated data can serve as training and testing data for new clustering methods. The simulation method is available as an R Shiny app.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Humanos , Reacción en Cadena de la Polimerasa/métodos , Benchmarking , Biopsia Líquida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...